

Alec Watkins (Ag. Engineering), Riley Garner (Ag. Systems Management), Hanlu Li (Ag. Engineering)

Consideration

3.)

Diverse user base

Different environmental conditions

Will be used on many vehicles

Budget of \$500

Weight

Archuine

Raspberry P

King Pigeor

Customized

Smartnhone

• TMP36 temp. sensor

converter

10mm proximity sensor

with frequency to voltage

10W/12V solar panel with

2Ah 5V battery pack and

USB voltage converters

7.)

Independently powered

Water and vibration proof

Additional criteria were given as:

Wealth of country may vary

2.) Design Considerations

Social/cultural

Environmenta

Economic

Economic

Constraints/Criteria

Design constraints for system were given by the PUP team:

Must measure: engine temperature and speed, vehicle

Ability to measure slope, ambient temperature, payload

Production

Chosen Components

Inouts

5

6

10

location, vehicle speed, and time of operation

Store data and remotely upload it to Cloud

9

Type of Consideration Design Criterion

Fasy to use

Reproducible Limit cost of syste

Durable

1.) Project Context

- Purdue Utility Project provides access to sustainable power and transportion to developing communities
- AgRover vehicle is the primary product of the Purdue Utility Project
- Problem/Impact: There is a need to monitor status of AgRover to improve product and increase customer satisfaction by facilitating maintenance and development of the vehicle
- Solution: Develop a data logging system for the AgRover to measure and upload to the Cloud key development and maintenance parameters of the vehicle

Decision Making

Four potential data logging systems were considered. Systems were based on:

- Arduino Uno
- Raspberry Pi
- Pre-built King Pigeon S261

 Customized Android Smartphone Although inflexible, the King Pigeon won due to its pricing, reproducibility, and ability to satisfy many constraints by default

6.) **Chosen Solution**

- Data logging system based on King Pigeon S261, which can measure GPS (location & vehicle speed), store & upload data to server, and is waterproof, all by default
- Only need to include engine temperature and speed sensors and independent power source, as well as vibration-proof the system to meet all constraints

Sponsor: Dr. John Lumkes Instructors: Dr. John Lumkes, Dr. John Evans. Dr. Margaret Gitau

Thanks to Dr. Lumkes and David Wilson for all of their

Biological Engineering DESIGN EXPERIENCE 2020 Title: Remote Data Monitoring and Tracking System for AgRover Utility Vehicles

8.) Summary Electronic system completely designed and built

Agricultural and

- Successfully measured sensor data with data logger, but will require future validation
- Successfully communicated with data logger but could not export data to server due to lack of access to SIM card
- Designed mounting plans for future workers to finish the system once possible

Successful Data Acquisition

Data logger thought TMP36 sensor was a current sensor; used resistors to fix signal. Bit output of 1213 implies VAIN = 0.61V; meter read 0.59V at sensor, so sensor was being read correctly. But this is ~10°C, a low value, so need to calibrate in future

Glued two magnets to small fan to test tachometer. Bit output of 1301 implies VAIN = 0.65V; meter read 0.64V at F/V converter, so values were read correctly. 0.65V→26 Hz→ fan runs at 13 Hz. Seem reasonable but need to alidate in future

SOLAR PANEL

BATTERY

TACHOMETER

F/V CONVERTER

Product and Implementation Plans Completed Circuit Communication

0 0 • 🕒 😋 🕫 0

Successful

MOUNTING PLANS

CAPSTONE/SENIOR

- The King Pigeon should be placed under the passenger side of the AgRover
- Mount solar panel onto vehicle frame using L-bracket: should extend over driver's seat (as in bottom-left picture but extending over seat instead of bed)
- To mount the temperature sensor, use a 3/4 inch x 3 inch coarse threaded bolt drilled out and waterproofed with epoxy to replace the oil stick (pictured below-center)
- Mount the tachometer using a piece of 1/8 inch steel, drilling two holes matching the top bolt pattern (pictured bottom-right)

Conclusions and Lessons Learned

- Designed a data acquisition system based on the King Pigeon S261 and various other components
- The system was found to be a successful solution to data acquisition for the AgRover
- · Made great progress and completed as much of the system as possible
- Made plans for finishing the system in the future after social distancing is over

Lessons Learned

- No solution is the best at every design criterion; while the King Pigeon was affordable and would be easy to reproduce, it was inflexible and very difficult to debug
- Sensor choice is very important for a data acquisition system. While data can be recorded by many sensors. mounting can be difficult for certain sensors, such as those we picked. Another sensor combination, such as a thermocouple and an optical sensor, may have been a better choice for this reason.

References:

- https://www.aliexpress.com/item/32787915974.html
- https://cdn-learn.adafruit.com/assets/assets/000/000/471/original/temperature tmp36pinout.gif?1447975787
- https://images-na.ssl-images-amazon.com/images/I/51LViVh0BJL. SL1001 .jpg
- https://images-na.ssl-images-amazon.com/images/I/81QUKDSBSIL. AC SL1500 .jpg
- https://images-na.ssl-images-amazon.com/images/I/61kLGo4Y3hL. AC SL1500 .jpg
- https://images-na.ssl-images-amazon.com/images/I/610xXoKeAkL. AC SL1000 .jpg

9.) Conclusions

Data Logger Design Matrix Use 5 7 345 338 7 8 355 274

Decisions guided by affordability. ease of implementation, and ability to work with King

Technical Advisor: David Wilson

Pigeon S261

Acknowledgements: help and guidance.